Asynchronicity

Paul R. Potts

05 Oct 2019

Another long week has passed. I wound up staying up very late on Wednesday.
Thursday morning I stayed home and worked on soldering together a prototype
board that I intend to send to the Thorlabs software team in China. I don’t
know if I’ll ever be able to say whether the long hours were worth it or not. I
am blessed in many ways though. This is the kind of work I would be doing
even if I wasn’t getting paid for it. Well, sort of — if I wasn’t getting paid, I'd
be scrambling to find some other way to make money, but I'd still be trying to
do this kind of thing in my spare time.

I'm pleased with my recent work on this project; over the past few months, I've
designed a schematic, turned it into a circuit board layout, ordered boards, tested
them, revised them, had our technician Scott do some of the assembly, and done
the rest of the assembly myself. I can solder the microchips and surface-mount
parts, but it is easier for Scott. For one thing, he has years of experience soldering
surface-mount parts, and for another, he has a big stereoscopic microscope to
look through. Also, I'm pretty sure that even though he’s older than I am, his
eyes are better than mine, and he doesn’t have the little bit of essential tremor
that I've got; it really only bothers me when I'm trying to do very, very fine
work like holding a soldering-iron tip to a resistor half the size of a grain of rice,
while I'm trying to hold the resistor in place with the tip of a very sharp pair of
tweezers.

(And, no, before you ask, the tremor doesn’t seem to be related to my caffeine
intake, at least not in the way one might expect; it actually gets better when
I've had my coffee, and is aggravated by stress).

The latest iteration of the prototype board is black, for the Halloween season. I
didn’t even know you could get printed circuit boards in black, but apparently
you can, and it looks pretty cool!

Saturday

This morning Grace and I got up and out reasonably early, although we both
woke up feeling pretty beat-up from a hard week. We had the kids toast a tray
of bagels with butter, and then Grace and I made the short drive to Milan for

https://en.wikipedia.org/wiki/Essential_tremor

oloocuseee

ddoan

Figure 1: green, blue, red, and black printed circuit boards

coffee and bread at two neighboring local businesses, Milan Coffee Works and
Mother Loaf Breads.

We picked up two seasonal sourdough loaves, one spelt with apple chunks and
spices, and the other a buckwheat walnut with sassafras and molasses. Both
were terrific, although to my taste the buckwheat was the better of the two, and
really declicious with butter. I’'m a big fan of some of the lesser-used grains, like
buckwheat, millet, spelt, Einkorn (an heirloom wheat), and most especially rye,
even 100% rye, strong and aromatic and suitable for eating with a shot of icy
cold vodka. We also brought home a foccacia made with marinated peppers and
onions, and that was terrific too — like a small crispy vegan pizza, combining
spicy peppers and sweet caramelized onions.

After we got our bread, we walked through the door to Milan Coffee Works,
as they are actually in the same building, and got ourselves a couple of lattes.
Grace had chai with oat milk, and I had coffee with oat milk. We didn’t stay to
drink them there, because we had more errands to run and wanted to get home
before the kids could get too crazy, so we took our drinks to go.

Grace wanted to run a quick errand in downtown Milan, so we parked down the
street. As I sipped my delicious latte, the caffeine gently massaged my brain,
and I started to feel like I was alive again. I noticed that it was a beautiful
fall day. This is something to attend to cherish — we might not get that many
of them! The week was mostly gray and rainy and the temperature has been
bouncing around from the eighties to the forties. I can’t figure out what to
wear when I leave in the morning. Some nights I go to sleep cold and wake up
sweating. Some nights it is just the opposite.

And Now, In Color!

Sitting in the car, sipping my coffee, my color vision came back. It wasn’t
really gone — it’s not like I was actually seeing in black and white and then
started seeing in color, but I was suddenly able to notice color again. It feels
like watching The Wizard of Oz The same thing happened to me back around
1996 when I first went on an antidepressant. As I continued to drink down my
latte, a gentle tingling in my scalp told me that I was getting the correct dose
of caffeine. (If my heart starts to race unpleasantly, I know I’ve had a bit too
much). When I can manage with coffee, I really prefer to stick to coffee and stay
off of prescription SSRIs or related drugs. It is an addictive drug, but the side
effects are a lot more pleasant than the side effects from even a mild SSRI like
Celexa.

I was on Celexa from last fall through this summer. This helped me to get
through some of the worst months of our time with houseguests. This time I
wasn’t really taking it for depression, per se, but anxiety. It helps a lot with that.
It takes the edge off my anxiety, but it also takes the edge off my thinking. I no
longer have my lifelong companion, obsessive-compulsive personality disorder.
This also means I'm not as good at my work. And my anxiety is so flattened,

http://www.milancoffeeworks.com/
http://www.motherloaf.org/about-us/

even on a small dose, that I feel indifferent to just about everything; it also
tends to flatten out my empathy, and I'm almost indifferent to the kids. It also
makes me uninterested in writing, and so on it, I really don’t seem like myself,
to myself.

So, I wanted to wean myself off Celexa again. In mid-summer I started cutting
my pills in half for a couple of months. Then after our houseguests left, I stopped
taking them. That didn’t go so well. Sometimes the worst side effects come from
withdrawing from these drugs. For weeks and weeks I felt like I had a mild flu
all the time. I gained ten pounds or so. It’s hard to describe the odd sensory
effects. Turning my head would make me slightly nauseated.

Those effects have gradually improved, but it might take a long time for them
to fade completely. And this is one of the reasons I am hesitant to take these
medications, and try to stay off them, unless I'm becoming a danger to myself,
or am unable to function in my various capacities.

Once More Into the Basement

I went down into the basement and did some additional work on my prototype
circuit board for work, and then put some time into cleaning up my work area
down there, which desperately needed it. When I’'m working on a circuit board,
bits of insulation and wire fly everywhere. Sometimes I need to clip pins with a
wire cutter, and they are made of a hard metal that snaps off and goes flying
when cut. So I needed to sweep that all up. I also continued with the project of
getting my Mac Pro working well again.

Veronica wanted me to try to restore some old iPad backups so she could find
some writing she did a few years ago. That turned into a challenge. There are
dozens of backup files and they aren’t dated, and we weren’t sure which one
had the data she was looking for. Restoring the backup worked, after struggling
with some error messages that didn’t make any sense and, it turns out, didn’t
describe what was actually wrong. (iTunes kept telling me it couldn’t restore
the backup because there wasn’t enough space available on my computer, but I
had over five hundred gigabytes of space available, and it turns out the error
message was actually popping up because there wasn’t enough space left on
the iPad; this error, by the way, is what convinced me a couple of weeks ago
that I needed to replace the old system hard drive, which was nearly full, with
something bigger, and it wasn’t even correct. I'm not unhappy to have a bigger
drive, but T would have preferred to put off spending the money a little longer).

I had to restore the iPad to a time when I had set up a “restrictions” passcode
to keep the kids from constantly changing settings, about five years ago. This
is not the same as the passcode needed to log in; when setting up an iPad for
the kids to use, I leave off a passcode. This is a code I set up to lock down
every setting I could, so that I could try to prevent the kids from screwing with
everything. It didn’t work. Back when I was commuting between Saginaw and
Ann Arbor, I was trying to use two iPads so that I could say goodnight to my

kids over a video call, and maybe read them a story. But they kept messing
with the iPad settings, playing with everything they could. They’d sign out of
FaceTime, which for some reason was very tricky to undo. They’d rearrange
all the icons and hide everything, so no one could find what they were looking
for. They would constantly rename the iPad, which is why the backups are very
confusing, because I can’t tell which iPad goes with which backup file. None of
the available restrictions would actually prevent them from doing these things.

They do, however, prevent me from doing a lot of other things, such as changing
an e-mail password. And I have long since forgotten the restrictions passcode
that I used for a period of a few months on that iPad before wiping it and
starting over. Apple products are pretty secure; there’s no good way to crack
the passcode. Which is why after wasting far too much time on this project, I
finally had to ask Veronica to just copy her old story out of the iPad, by writing
it in a notebook.

If she manages to hold on to the notebook, it might be readable in thirty-seven
years. ['ve still got some of my old notebooks, with journal writing and story
ideas, from when I was sixteen, thirty-seven years ago, and they are still perfectly
legible, although the paper has yellowed a bit. And I've got some things I wrote
on a word processor on my Commodore 64, when I was sixteen.

The computers I was using are long gone. I don’t think I have anything that
I made on a computer from the age of 14, because at age 14, I didn’t have a
printer, except a strange one called a TRS-80 Screen Printer, which used silvery
rolls of aluminum electrostatic paper. It shot sparks and created a lot of ozone
and blackened aluminum dust and spat out a very gritty, low-contrast, slightly
wobbly image of whatever was on the screen, which you could tear off like a
cash-register receipt. The paper curled up and did not hold up well over time.
In 2019 I doubt you could sell such a thing; it probably would be considered
a health hazard. I looked in vain on YouTube for a clip of the thing printing,
but couldn’t find one. The noise it made when I pressed the “Print” button was
impressive — it sounded like someone was trying to drill through an aluminum
screen door.

There’s Always More Work

I’ve continued to make slow progress at work. This week I became bogged down
for a couple of days by problems with an Windows application, written in C++4,
using the Qt framework. I needed to get a pretty simple thing working. The
Windows application sends packets of data to the microcontroller over a couple
of different possible interfaces. You can plug in a USB cable, and send the data
using a library call to the driver for the chip on the other end, which converts
from USB on one side to old-fashioned serial on the other. Or if you have
an adapter from USB to RS-232 or an older computer with an honest-to-God
built-in RS-232 port, you can use that.

And so, it’s time to talk about asynchronicity.

http://www.trs-80.org/trs-80-screen-printer/

Asynchronicity

Warning: this bit is highly technical, so non-geeks might want to skip
ahead past this section.

The USB connection was working perfectly. I could reliably send firmware
updates to the microcontroller that way. But the serial side, which uses a C++
class called, unsurprisingly, QSerialPort, was not working reliably at all. So I
had some debugging to do.

Sending data with this class is pretty straightforward. You just call one method
to send a chunk of data. The call doesn’t block — that is, the method call
doesn’t wait until all the data has gone out before returning. Computers run
much faster than serial ports do, so it doesn’t really make sense to stop your
whole program, or even one thread of it, while the data is being slowly clocked
out onto the wire.

That makes things a bit tricky, though, because I actually want my code to stick
with a rigid “call-and-response” plan. I want to send the packet, and wait for
the answer before I send the next packet. But the call to receive data also does
not “block,” at least not in the usual sense, and again, you don’t usually want it
to, since it brings your thread of execution to a halt. Depending on how your
program is structured, that might also mean that the graphical user interface
would gring to a halt, too, and that’s bad.

So there are two approaches described in the available sample code, synchronous
(blocking) and asynchronous (non-blocking). “Asynchronous” means “not syn-
chronized” with your code; it means that the work happens behind the scenes,
and it will be done at some point, and so you have to be ready to handle some
kind of notification that tells you when it is done.

Qt is a very old framework, and it came into existence before modern versions
of C++ existed, and when computers were much slower, and it wasn’t so
commonplace for applications with graphical user interfaces to have multiple
threads of execution. So the QSerialPort class’s way of supporting asynchronous
sending and receiving is kind of weird, and not very much like the way most
modern libraries do it.

A more modern library would, typically, let me call a function to send data,
with parameters that included a pointer to a buffer of data to send, a count of
the number of bytes in the buffer, and a timeout value, typically in milliseconds.
When you make a call like this, you’re telling the operating system or library
or whatever “hey, here’s some data; send it out the serial port. Wait for up to
25 milliseconds. If it takes longer than that, stop and let me know.” Then that
call would return some sort of error code letting you know whether is succeeded
or not. This call would “block,” but you wouldn’t typically care, because your
application would be broken into threads, so that if one thread blocked, the
others would keep running, and parts like the graphical user interface would not
freeze up. My application is already broken into threads; this code is running in

a thread to do serial communication by either RS-232 or USB, and it is separate
from the thread that runs the graphical user interface.

Anyway, that’s one way to send data. It’s synchronous, but it doesn’t really
matter, because only one thread waits for the data to go out. Receiving can be
done in a similar way: provide the number of bytes you expect to get, a pointer
to a buffer big enough to hold those bytes, and a timeout. One thread waits for
data to come in, but the others keep going.

The relevant part of Qt’s synchronous serial receive sample code looks like this:

if (serial.waitForReadyRead (currentWaitTimeout)) {
QByteArray responseData = serial.readAll();
while (serial.waitForReadyRead(10))
responseData += serial.readAl1();

const QString response = QString::fromUtf8(responseData);
emit this->response(response) ;
} else {
emit timeout(tr("Wait read response timeout %1")
.arg(QTime: : currentTime () . toString())) ;

}

If you squint, you can kind of see how that looks like the process I described,
except that you can’t specify how many bytes you want. In fact this example
doesn’t guarantee you’ll get any particular number of characters. That’s fine if
you have an ongoing stream of characters that might trickle in at any time, and
you just want to log them, or something like that, and then stop if you haven’t
gotten any for a while. But that’s not at all how my application works. I need
to get my packet with its fixed number of bytes, because the contents of the
packet will tell my code what to do next.

Typically libraries also provide a way to read and write data asynchronously.
This is typically done using some kind of callback — the library will “call back”
to a function in your code, and that function needs a way of signaling to another
part of your code that the data was sent, or received, or that it didn’t work.

In that case, you might want the code in your class object to wait on a semaphore;
that’s the classic “computer science-y” thing to do. Your code waits for a
“resource” to be acquired. A semaphore is a flexible mechanism that can be used
to manage any kind of resource. In this case of reading data, the “resource”
is the packet of data we are waiting for. The called-back function “gives” the
semaphore, and my main thread of execution tries to “take” the semaphore.
There’s a timeout. This is a classic consumer/producer problem. Qt provides a
class called QSemaphore that seems like it ought to be perfect for this. So I
implemented some code kind of like the example below. (This is not the real
code; it’s a simplified excerpt to illustrate the concept).

First, we need a method that gets called when bytes are ready to read. This

method then receives all the bytes that are currently available, and appends
them to another byte array holding all the bytes I’ve accumulated so far. When
it has enough bytes, it “releases” the semaphore, with a parameter of one, which
in our case indicates that one packet of reply data is now available. The “ball”
is now in the consumer’s court.

void SendFileWorker::handleReadyRead ()

{
QByteArray bytes = m_serial_port_p->readAll();

m_rx_bytes_a.append(bytes);
if (m_rx_bytes_a.count() == REPLY_PACKET_BUFFER_SIZE)
{
m_reply_sem.release(1);
}
m_rx_byte_a_mutex.unlock() ;

}

Next, we have the method that waits to “take” the semaphore. When we do this,
conceptually this “consumer” code now has taken one “resource,” one packet
of reply data, and the “producer” code no longer has a resource, until another
packet comes in:

bool SendFileWorker::receive_rs232_reply(unsigned char * data_p)
{
bool ret_val = m_reply_sem.tryAcquire(1, 250);
if (true == ret_val)
{
(void)std::memcpy(data_p, m_rx_bytes_a.constData(),
REPLY_PACKET_BUFFER_SIZE);
m_rx_bytes_a.truncate(0);

return ret_val;

}

That seems so simple that it couldn’t not work, right? That’s what I thought!
But, in fact, it didn’t work at all. The code always waited for the semaphore
until it timed out. The data was coming into the serial port, but my code was
never receiving it.

This is because QSerialPort doesn’t really support asynchronous sending and
receiving using callback functions the way they are usually implemented. Qt uses
a somewhat antiquated mechanism called “signals and slots.” Signals and slots
are very useful ways to hook up all kinds of messaging between different pieces
of code, and in most cases sending an object a signal is pretty much equivalent
to calling a method of the object; slots are in fact just methods.

But not just like calling a method of the object.

The signals that QSerialPort provides to indicate that bytes are ready to
receive are really sent when an event loop detects a condition and triggers the
call to the “slot” method. And that only happens if the event loop runs. And
the event loop runs synchronously. Doing anything that blocks the thread your
Qt object is running in, such as waiting to take a semaphore, will bring the
event loop mechanism to a halt, and so that code that is waiting to give the
semaphore when it is called will never be executed.

It might seem like the logical thing to do is to put the QSerialPort object on
its own thread, but for various reasons this doesn’t really solve the problem.
Strangely, QSemaphore objects aren’t really made to send messages between
Qt threads. The fundamental method that Qt provides for this is... signals
and slots. And your thread won’t get those signals if it is is sleeping on a
QSemaphore, or some kind of queue, or any of the “classic” concurrency
programming tools that people who have studied programming formally would
expect to use for this purpose.

The sample code available to describe how to use QSerialPort does a really,
really poor job of explaining this. The asynchronous examples are very contrived
and simplified and don’t show how to do something that ought to be quite simple:
sending a packet of serial data, and waiting on a reply. A quick search of the
message boards will reveal that a lot of people have trouble using QSerialPort
to receive data the way they want it to, and that there is a distinct lack of clear
explanations of how to do it.

I got it working, finally, by using something called a local event loop, and it
works great. I hook up my signals and slots like so:

connect(m_serial_port_p,
SIGNAL(errorOccurred(QSerialPort::SerialPortError)),
this,
SLOT(handleError(QSerialPort::SerialPortError)))
connect (&m_rs232_rx_timer,

SIGNAL(timeout()),

&m_rs232_rx_event_loop,

SLOT(quit()) s
connect(m_serial_port_p,

SIGNAL(readyRead()),

&m_rs232_rx_event_loop,

SLOT(quit()) s

My QSerialPort object’s errorOccurred signal, which includes an error pa-
rameter, is now hooked to my object’s handleError slot, my QTimer object
timeout signal is hooked up to my local event loop’s quit slot, and my QSeri-
alPort object’s readyRead signal is also hooked up to my local event loop’s
quit slot. I have to use a timer, because that readyRead signal is vague; it
just means “at least one byte is available for reading.” And I have to keep track
of my own timeout condition. I also have to handle retries until I either have

the number of bytes I expect, an overflow condition, or I’ve run out of retries.
This is quite a bit uglier and more complicated than just making a single call
to wait for a certain number of bytes or a timeout, but it works with perfect
reliability now. My receive function now looks something like this:

bool SendFileWorker::receive_rs232_reply(unsigned char * data_p)

{

bool done = false;
bool overrun = false;
int tries = 0;

int max_tries = 5;
(ByteArray packet;

m_rs232_rx_timer.start(50);
do
{

m_rs232_rx_event_loop.exec();

if (m_rs232_rx_timer.isActive())

{
/*
If the event loop exited and the timer is still
running, we must have gotten the readyRead() signal.
*/
packet += m_serial_port_p->readAll();
int len = packet.length();
if (len > REPLY_PACKET_BUFFER_SIZE)
{
overrun = true;
}
else if (len == REPLY_PACKET_BUFFER_SIZE)
{
(void)std::memcpy(data_p, packet.constData(),
REPLY_PACKET_BUFFER_SIZE) ;
done = true;
3
b
else
{
tries += 1;
X
} while ((false == overrun) &&

(false == done) &&

10

(tries <= max_tries));
return done;

}

I can do something similar using the synchronous methods, using WaitFor-
ReadyRead() instead of using a slot in my own code, but it isn’t much simpler.
WaitForReadyRead() must be allowing my main thread’s event loop to run. I
tried to take a look at the implementation, to see if it gave me any insight, but it
calls another method, and then another, and then some sort of implementor class,
using the “pointer to implementor” idiom, also known as “pImpl,” and then that
implementor calls another method which was defined as a macro, which is a
pretty ugly and primitive thing to do in a framework written in C++. Searching
for that implementation crashed my text editor’s “find in files” function as it
tried to search through almost 250,000 files of Qt source code.

There’s a big difference between “theoretically, you can learn a lot from reading
the source code!” to actually being able to read and understand the source code of
a project like this, which contains hundreds, if not thousands, of developer-years
of work, and at this point, probably a non-zero number of developer-careers, too.

Sometimes you can learn a great deal from reading a framework’s source code.
The PowerPlant framework was written by one very smart guy and it was
incredibly readable. I really miss using a framework that was so simple and
clear. But Qt is not nearly as easy to understand. And waht I am trying to do
isn’t really very complex or unusual, so the code to do it shouldn’t need to be
over-complicated.

Anyway.

I will probably write an blog post about this, because when I figure out things
that ought to be well-documented, but isn’t, I like to write blog posts about
them. I have benefited enormously from other people’s blogs explaing things
that they have figured out, so it only seems right to give back. And in fact I still
occasionally get “thank you” comments on blog posts I wrote years ago.

It’s Time to Stroke My Long White Beard and Complain about Kids
Today

I first did event-driven programming around 1985, when I was learning how
to program the original Macintosh. Event-driven programming has a lot of
advantages on small and slow systems. But even on small microprocessors, like
the SAMA4S2 chip I'm programming, which has only 64K of RAM and a clock
speed that is only a bit faster than the original Macintosh, I am accustomed to
using tiny operating systems like FreeRTOS that allow me to run multiple tasks
and communicate between them very easily, with seamphores and queues that
pretty much just work, with no surprises. The old event queue designs were a

11

hack that allowed very slow chips to behave almost like they were running fully
multi-threaded operating systems and applications; they aren’t really all that
useful when the chips are fast and it is easy to do things in more “computer
science-y” ways.

It’s actually really, really easy to write event-driven code using primitive multi-
threading constructs like semaphores and queues; FreeRTOS does a brilliant job
in showing just how this sort of thing can be done in a portable but very efficient
way.

I've used a lot of different C++ frameworks over the years: TurboVision, THINK
Class Library, the Microsoft Foundation Class Library, PowerPlant, the Object
Windows Library, and others I have no doubt forgotten; I've also used a number
of frameworks written for languages other than C++, like Dylan, NewtonScript,
and Java.

Qt has outlasted pretty much all of the frameworks I mentioned. One reason
is that it solves a lot of hard code portability problems. But this “clash of
civilizations” — of different programming paradigms, really — at the heart of
Qt is really making me wonder if there isn’t a better framework out there.

Could I find a framework for Windows programming that is more modern, more
consistent, and simpler, and not just bigger and more “modern?” (It would
be nice if it was cross-platform; that used to be one of Qt’s big selling points,
but it has become less important to me now that pretty much everyone we are
targeting with our products has access to a PC running Windows, and there
isn’t a good business case to be made for writing a Macintosh version).

I don’t think such a thing exists, unfortunately.

Non-geeks, it’s safe to come back out now!

What I’'m Reading This Week

I recently picked up a couple of notable books, both recently released in trade
paperback editions, and both biographies, more or less.

The Good Neighbor by Maxwell King

I've been reading this one when I’'m on the treadmill. It’s fascinating to read how
Rogers was the over-protected child of a very wealthy family, heirs to various
industries in Pennsylvania. Young Rogers suffered from asthma, likely due
to the terrible air pollution in the region, pollution generated largely by the
businesses owned and operated by his family. The irony of the over-protected
son of incredibly privileged parents stuck inside all summer in front of early,
costly air-conditioning units, suffering because of the very same environmental
degradation which gave him that privilege, is not lost on the author.

If you read this with a generally left-wing perspective, it becomes a great
document about how class infiltrates everything. I'm not very far along in it

12

yet. Young Fred Rogers is a sort of musical prodigy, playing the Steinway grand
piano his grandmother bought him when he was only about ten years old. It
seems like a tremendously indulgent gift, but apparently that piano inspired him
his whole life long. So the question shouldn’t be why young Rogers deserved a
wonderful instrument like that, when he clearly made full use of it. The question
should be why all kids don’t have access to things that will help inspire and
instruct them.

I need to be careful reading this book. Over the decades I'’ve become quite
comfortable with my contempt for the wealthy. But Rogers, at least so far, I
read as a tremendously sympathetic character. As a child I had a lot of the
same painful intraversion and difficulty interacting with my peers. It’s hard to
stay mad a at him, even though he had a Steinway grand piano and I had a
broken-down Yamaha acoustic that my mom picked up for me at a garage sale.
It was a bad and cheap guitar, and the guitar repair tech at the local music store
couldn’t figure out how to straighten the neck to make it easier to play. But if
you want to learn something badly enough, you’ll rip your fingers to shreds to
do it.

Right now Rogers is just heading off to college. I'll have more of a book report
when I've read more. I can’t say that I really love the writing in this book; it
does the job, but so far it feels just a little bit flat. Maybe it will get better in
later chapters.

Astounding: John W. Campbell, Isaac Asimov, Robert A. Heinlein,
L. Ron Hubbard, and the Golden Age of Science Fiction by Alec
Nevala-Lee

This is sort of a biography, but it’s not just a biography of one person. It
interleaves biographies of several of the most important figures in the rise of
pulp science fiction, especially magazines such as Astounding Science Fiction.
I grew up reading Asimov and Heinlein. I know Campbell as the author of a
few influential stories, most notably the novella “Who Goes There?” That story
may be most famous these days for the 1992 John Carpenter film adaptation,
but it has influenced a lot of other work; for example, the X-Files episode “Ice,”
which is a very straight-up homage to the story. Campbell is best known as the
editor who shaped and influenced the direction of the genre in these early days,
known now in retrospect as the genre’s “golden age.”

The real appeal of this book is the honest and unflinching portrayal of Campbell
and the other larger-than-life figures that shaped the genre. Nevala-Lee does not
sugar-coat their sexism and misogyny, while at the same time, the author hasn’t
showed up just to “cancel” these brilliant and flawed people. Campbell was a
bad student and a liar. At one point he wrote, in one of his overly-inflated bits of
autobiographical writing in Astounding, that he was working with automobiles.
This left readers imagining that he was probably working on a top-secret project
to design an atomic car, or something like that. Nope — he was living in

13

https://en.wikipedia.org/wiki/The_Thing_(1982_film)

desperate poverty, and working as a car salesman.

His self-portrait, like Hubbard’s, was a big lie that, somehow, in the minds of
a generation of readers, became “truthy.” He and Hubbard both broke just
about every moral code of the time, in their interactions with women, while
at the same time somehow imagining themselves to be the ultra-competent,
ultra-moral, ultra-masculine heroes of their stories. Nevala-Lee doesn’t really
accuse his subjects; he lets their life stories convict them, or vindicate them,
as the reader sees fit. And he does not hesitate to talk about some of their
(fictional) stories, too, and how so many of them were, honestly, just plain bad,
along with those few that really were “golden.”

This Week’s Thing: Chris Lester and The Metamor City
Podcast

Back in the early days of podcasting, in the summer of 2006, I was turning
William Hope Hodgson’s novel The Boats of the “Glen Carrig” into an audiobook
podcast. I was just barely getting things up and running on a technical level,
recording between about 1 and 3 a.m. each night using a battered and patched-
together Macintosh PowerBook G4, struggling with bad audio, and listening to
other podcasts that were out there. I don’t remember exactly when I first heard
Christ Lester’s Metamor City Podcast, but it was probably in 2007. I listened to
a few of them, and decided that his urban fantasy setting didn’t really fit my
tastes, when tended towards the hard science fiction of writers like Greg Egan
and vintage “weird tales.” And so I forgot about it. Back then I didn’t have
the space on my beat-up laptop to keep old episodes of all the podcasts I was
listening to, I deleted them, and I forgot a about The Metamor City Podcast.

For a long time.

A few months ago it popped into my head again, as these things sometimes do,
and I became determined to find that urban fantasy podcast I listened to a bit
way back when. But I couldn’t remember the name of the show! It’s surprisingly
hard to search for early podcasts now, because the searches have all been twisted
by the gravitational pull of big podcasts that now have media organizations and
money behind them. But eventually I found it and was a bit startled to find out
that it is still going, sort of.

Back in the day Chris Lester was recording stories that were set in the Metamor
City “shared story universe.” After warming up with a few stories, he continued
with a full novel, called Making the Cut. And then did something incredibly
impressive, given that podcasts didn’t actually make any money and everyone’s
labor on the project was volunteer work — he adapted the novel into a full-cast
radio drama.

Making the Cut is a bit overly romantic and soap-opera-ish in places, and it
seems at times like the plot is wandering away from the author and going in
directions he didn’t really plan for very well, and the full cast is of mixed ability.

14

http://www.metamorcity.com/

But despite all that, when it is good, it is wery good — really moving and
impressive.

I should mention that Lester’s urban fantasy world really isn’t for everyone. It’s
a world of humans, vampires, elves, demons, werewolves, and other monsters,
and there’s a lot of magic involved. In Making the Cut a lot of the plot centers
around polyamory and characters that change gender, and while it generally
isn’t pornographic per se, at least in my judgment, because the story is really
about the characters and their relationships, it is quite often erotic, and plays
with a lot of sexy-monster tropes. Your judgment may differ; some people are
offended by anything that features sexually explicit talk or acts at all. If that
describes you, you won’t enjoy Chris Lester’s work.

So over the last few months I've listened to the early stories, and then the
whole full-cast novel, and then more stories, and then another novel, called
Things Unseen, which didn’t get the full-cast treatment but which is, in terms of
structure and plotting, quite a bit better than Making the Cut, and then even
more stories. And there’s another novel in progress now, called The Lost and
the Least. 1 haven’t started listening to it yet, but I have every reason to believe
that Lester’s writing has continued to get better.

Over the course of over a decade of podcasts, one can watch (well, actually,
listen to) something pretty amazing happening. One can watch Lester go from
a skilled amateur to a skilled and experienced semi-professional fantasy writer
(“semi-professional” only because at least in the episodes I'm listening to, from
August of 2017, he’s still got a day job).

The original Metamor City Podcast petered out after a few years as Lester moved
and changed jobs, but he started up a weekly podcast called The Raven and
the Writing Desk in the same feed, and that one continues to this day. One of
the most interesting things about that podcast is that in each episode, after
reading a chapter, or part of a chapter, of a work in development, Lester talks
about how his writing has been going for the week. He’s brutally honest, freely
admitting when things have been going badly and he hasn’t managed to get
enough butt-in-chair time, and also celebrating when he’s been able to get a lot
of work done.

It’s really inspiring. Lester also uses the feed to post interviews with other writers
on the craft and business of writing, and is also himself sometimes interviewed.
Those interviews have gone from drunken carousing between groups of friends in
the early days to to very focused and insightful sessions about what it is really
like to try to make a go of it as a writer with a day job. Lester now has a number
of books in print, in snazzy editions with professional-looking covers.

If you'd like a taste of his work, which isn’t all centered around Metamor City, I
would recommend listening to a couple of his short stories and novellas. There’s
a fascinating novella called Divide by Zero which starts in The Raven and the
Writing Desk episode 81, from December 16th, 2016. You might also like the

15

story “Last Sunset at the Golden Gate,” episode 42, from March 8th, 2016.
(Again, both contain some erotic elements that some people will want to avoid).

There’s a lot of content in The Metamor City Podcast feed — over 300 episodes,
and it’s still very much an active and ongoing project. The project he’s been
engaged in is truly inspiring, and it makes me think wistfully about roads not
taken, but maybe also about side streets that haven’t yet been closed off. T used
to write fiction, and some of it was well-regarded, although I haven’t felt the
same need to write fiction over the years as I've felt to write non-fiction. But
I'm not ready to say that I’ll never write fiction again!

As Chris Lester says, “And that’s this week’s story. Keep it on the bright side!”

About This Newsletter

This newsletter by Paul R. Potts is available for your use under a Creative
Commons Attribution-NonCommercial 4.0 International License. If you’d like
to help feed my coffee habit, you can leave me a tip via PayPal. Thanks!

16

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://paypal.me/coffeeunderachiever

	Saturday
	And Now, In Color!
	Once More Into the Basement
	There’s Always More Work
	Asynchronicity
	It’s Time to Stroke My Long White Beard and Complain about Kids Today

	What I’m Reading This Week
	The Good Neighbor by Maxwell King
	Astounding: John W. Campbell, Isaac Asimov, Robert A. Heinlein, L. Ron Hubbard, and the Golden Age of Science Fiction by Alec Nevala-Lee

	This Week’s Thing: Chris Lester and The Metamor City Podcast
	About This Newsletter

