
Making Trouble

Paul R. Potts

31 Dec 2021

Note: this week’s issue includes excerpts of GNU Make files. The syntax
highlighting won’t appear in the version send via TinyLetter, but the standalone
HTML file should include it. If the code is too wide to fit in your window, look
for a horizontal scroll bar at the bottom of the code sections.

Thursday
It’s been quite some time since I last sent out a newsletter. It’s New Year’s Eve
Eve. In about 30 hours, it will be 2021. If I’m going There are plenty of reasons
including losing a job, starting a new, and challenging job, and the stress of
living through another year with the risk of COVID affecting everything we do.
But I figure the way to get back into writing is to start. Maybe I’ll be able to
fill in the blanks later. And what’s on my mind right now is a discussion of
some new I.T. infrastructure at home, including a new server and some new
computers, and what we’re doing with this new infrastructure. This includes a
new workflow for writing.

The Synology NAS

Recently I purchased a Diskstation DS620slim from Synology. This is a small
server that holds six 2.5-inch hard disk drives or SSDs. I’ve long wondered if
it would be possible to set up a home RAID server. I’ve periodically looked at
available products, and they’ve always seemed a bit too complicated, power-
hungry, noisy, and expensive. But this year when I looked at available servers, I
came across this one, and it seemed to be just what I wanted. In particular it is
small, quiet, and consumes very little power. It will sit on a shelf in my home
office, attached to a UPS, and monitors the UPS status via a USB cable. If the
UPS indicates the power is out, after a few minutes the server will shut itself
down, well before the UPS runs out of power.

There’s a very nice web interface. Since it has no screen or connector to plug in
a monitor, the web interface is the only interface. Via another computer on the
network, I was able to configure multiple accounts, privileged and unprivileged.
The device allowed me to set up two-factor authentication. So to sign in with
administrator privileges, I use a pass code delivered via an app on my phone.

1

https://www.synology.com/en-us/products/DS620slim
https://en.wikipedia.org/wiki/RAID

Things got slightly confused with my initial order and the server came with six
3.5-inch hard drives instead of 2.5-inch hard drives, which left me looking glumly
for a while at the empty server. I thought about returning all six 3.5-inch drives,
but I had use for a couple of them as new backup drives. I might return four of
them, or I might keep at least some of them on the shelf for future contingencies.
I’ll figure that out in the new year.

SSDs make ideal drives for this server, and enterprise-grade hard disc drives
drives are also recommended, but it turns out that due to a new variety of
cryptocurrency, there’s a shortage of high-capacity 2.5-inch enterprise-grade
hard-disc drives, and high-capacity 2.5-inch SSDs are extremely expensive at
the moment. Cheaper drives are not recommended, but they were available, so I
bought eight inexpensive 1-terabyte hard disc drives drives made for laptop use
(six to fill the slots, and a couple of backups).

Configured with these six 1-terabyte drives in the recommended SHR-2 RAID
configuration, using the btrfs file system, there are about 3.7 terabytes of
storage available on the server. The rest is overhead used for data protection.
Theoretically, the data is protected not only if one drive fails, but also if two
drives fail. With two spares on the shelf, the idea is that I can swap out a bad
drive or even two bad drives, and the RAID volume will be rebuilt without
losing anything. The server will just run slower for a while as it reconstructs the
contents of the drive. I am betting that at least four of the 1-terabyte drives
will last for a year, but I will hedge that bet by purchasing more drives in the
first quarter of 2022, and I will also make sure to get a backup strategy in place.

Upgrade Paths

Supposedly it’s possible to not only replace individual drives, but to incrementally
upgrade the storage capacity, by swapping in bigger drives. Because of the way
data is duplicated across drives, though, swapping in just one higher-capacity
drive won’t upgrade the storage space. The available capacity wouldn’t budge
until I have upgraded four or more of the six drives.

Using the same SHR-2 RAID configuration, the numbers work out something
like this for upgrading 4 of the drives:

Drive 1 Drive 2 Drive 3 Drive 4 Drive 5 Drive 6 Available Space
1TB 1TB 1TB 1TB 1TB 1TB < 4TB
2TB 2TB 2TB 2TB 1TB 1TB < 6TB
3TB 3TB 3TB 3TB 1TB 1TB < 11TB
4TB 4TB 4TB 4TB 1TB 1TB < 14TB

And like this for upgrading all the drives:

2

https://btrfs.wiki.kernel.org/index.php/Main_Page

Drive 1 Drive 2 Drive 3 Drive 4 Drive 5 Drive 6 Available Space
2TB 2TB 2TB 2TB 2TB 2TB < 8TB
3TB 3TB 3TB 3TB 3TB 3TB < 12TB
4TB 4TB 4TB 4TB 4TB 4TB < 16TB

To put these numbers in perspective, my venerable Mac Pro (turned on in 2008
and almost never turned off since) currently has three drives in it: a 2-terabyte
SSD for a system volume, which is a bit more than half full, a 4-terabyte spinning
drive for media, which is almost full, and a second 4-terabyte drive for media,
which is almost empty. The almost-full drive contains my complete iTunes
library, containing lossless files imported from hundreds of compact discs. That
amounts to almost a terabyte. It also contains the audio and video files for
hundreds of personal projects (very space-intensive). By comparison, our family
photo library and all spreadsheets, word processing files, and related documents
represent only a small fraction of the space used; text files are tiny compared to
video files.

If I upgraded the server to 8TB, I could easily use it to hold everything I’ve
got and everything I’ll be working on for the forseeable future, and stop using
spinning discs for cold storage in the Mac Pro, instead just keeping current work
on the SSD. That would be faster, too. But the future isn’t easily forseeable.
The kids are starting to become interested in 2-D and 3-D animation and audio
and video production. If they really get going on that, they’ll be creating a lot
of large files. The server is here to enable them to learn and have fun like I have,
so I’d better plan for more than 8 terabytes of capacity, although I won’t need
to add it all at once. I should plan on upgrading the server to use six 4-terabyte
SSDs, although I have some time to watch for prices to come down.

The Backup Problem

The problem with these big volumes of data is backup. For each of these hard
drives, I use two separate backup drives. When we lived in Saginaw, our bank
had a very nice local branch housed in a beautiful old building, and I would
periodically take one set of backup drives and put them in my safety-deposit
box, and bring the other one home. This solved the off-site backup problem,
which is really the “what happens if the house burns down?” problem. I don’t
have a great solution now. The server should be reliable, and survive some drive
failures, but it still needs to be backed up. Synology has a cloud backup service,
and I might wind up trying it.

Exceeding My Expectations

This thing has some features that have far exceeded my expectations. I’ve
described the web interface for administration and the two-factor authentication.

3

But the NAS also supports two plug-in applications that solve a long-standing
problem: sharing the music library to a network containing many kinds of clients.

iTunes supports a protocol for sharing a local library with multiple computers
on the local network, as long as they are also running iTunes or Apple Music. I
first tried to figure out how to use this sharing years ago: I wanted to maintain a
music library in one place, and use a laptop to listen to it, pulling the music from
the server and sending it to a set of speakers attached to an AirPort Express
device. This never really worked at the time. I could get a little music out of it,
but the WiFi throughput a dozen years ago or more was just not sufficient, and
the playback would stutter terribly and freeze up while iTunes buffered more
audio.

With newer WiFi routers, it works fine, and so we’ve been able to use a Mac
Mini in the family room or a laptop running Windows and iTunes in the upstairs
bedroom to play music from my Mac Pro. But I was never really happy with
using the Mac Pro as a server. It has a feature which will keep it awake when
there is network traffic over the wired network, but not when there is traffic over
WiFi. If the Mac Pro is on WiFi, I have to set it to never sleep, which wastes a
lot of power.

Because Apple no longer supports iTunes on newer operating systems, and newer
Mac hardware requires newer operating systems, when I need to retire the Mac
Pro, I won’t be able to use iTunes as a server anymore. At some point the
compatibilty problems introduced by maintaining very old operating systems
and programs make it not worth the effort, so if I want to replace my Mac Pro
with another Mac — and I’ll still need a Mac if I want to be able to access any
of my Logic Pro projects — I won’t want to replace it with a machine that’s old
enough to still run iTunes. I’ll want a Mac that can run modern software. And
that Mac won’t run iTunes.

I’ve also long wanted to find a good replacement for using iTunes as a client, so
that I could stream music from my iTunes library to computers running Linux, or
to phones. Unfortunately Apple’s protocol includes a proprietary encryption key,
so I wasn’t able to find a good solution to this. Open-source clients weren’t able
to access files from iTunes acting as a server. And there aren’t any closed-source
clients other than Apple Music, which won’t access iTunes server content on an
iPhone, and which, I assume, will eventually be updated to phase out support
for accessing iTunes server content entirely (Apple really would rather sell you
their propriety cloud-based music sharing service, and I’m entirely uninterested
in that).

The Synology NAS solves the obsolete server problem, the obsolete client problem,
and the mixed client problem.

There’s a plug-in which will serve music directly from the server to any copies of
iTunes running on the local network. Music playback was a bit irregular and
stuttered while the server was initially building the volumes, but once that was
done, it works just fine.

4

There’s also a plugin called Audio Station and a corresponding app called DS
Audio for iPhone and Android, which completely solves the problem of accessing
music files from the server from a phone on the local network.

And for any other computer with a web browser, they can simply connect to
the server, using an unprivileged account that has read-only access to the music
library, and run a web-based application which looks an awful lot like iTunes.

To put new music into the library, I can still import it into iTunes on my Mac
Pro, and then use the command-line tool rsync to update the files on the server.
I think I need to tell the server to manually update the index, but that’s not
really a problem. iTunes isn’t really required; it’s just a convenient tool that I’ve
been using for a long time. But Apple doesn’t support it on newer computers
anyway, so I will eventually phase it out.

Since most of the music in the library is in Apple Lossless format (aka ALAC),
I was concerned that the clients wouldn’t all be able to play these files. I wasn’t
looking forward to converting all the files to WAVE format, which would involve
doubling their sizes and losing a lot of the MP3 tags. But I needn’t have worried.
All the files play very nicely via web browser, via app, and via iTunes. I think
iTunes for Windows is lacking some codecs, but we’ve currently got only one
laptop running Windows. We keep it around because Zoom never worked right
on the Linux laptops. We’re planning to phase out Windows altogether in 2022.

I’m not quite ready to phase out macOS entirely, but we are putting increasing
effort into using Linux for more and more. Which brings me to the next topic.

Central Dogma

The new NAS server is only a part of our strategy to upgrade our I.T. infras-
tructure. In order to give the kids more options for computing, and give a few
to the adults as well, I bought three new PCs (sort of).

The network device name of the new server is central-dogma taken from
the animated series Neon Genesis Evangelion. The music library is called
nerv_music, which is a reference to the NERV organization in the Evangelion
universe, but also a reference to Laurie Anderson’s “Nerve Bible.” In Central
Dogma, deep underground in NERV, there are three giant artificial intelligences,
called Balthasar, Melchior, and Casper.

Our computers called balthasar, melchior, and casper aren’t three giant
artifically intelligences. A few weeks ago I found that B&H Photo Video had
three small computers in stock, Intel NUCs (“Next Unit of Computing”) of the
type known as “Bean Canyon.” These are tiny boxes, smaller than a Mac Mini,
but they have i5 processors in them. I chose these because they were inexpensive
and also because they are very low-power; one of them is sitting on the shelf
downstairs next to the NAS server, for remote use by the kids who are learning
programming. They can SSH into it, or they can use the desktop remotely using

5

https://evangelion.fandom.com/wiki/Central_Dogma

the RDP protocol. They can mount their own network volumes from the server
and keep their files there, accessible from any machine on the network.

These little computers came without any drives and without any operating
systems. I ordered memory and SSDs. The boys and I installed the memory and
SSDs — this was very easy to do, much easier than building a regular PC from
parts — and closed them up. I installed Ubuntu Server to start with. There
were a few issues I came across using Ubuntu Server. For example, by default,
the devices would go to sleep after a little while, so I had to figure out a fix for
that. It’s a strange default configuration for a headless server machine. But once
I found the workaround, the fix was easy.

I thought at first we might use these boxes entirely via the command line, but
although I’m pretty good with command-line tools, I’m just too accustomed to
doing some things with GUIs. So, I installed the light-weight lightdm window
manager and the standard Ubuntu desktop environment. While I was at it, I
replaced the Ubuntu MATE desktop environment on the old HP laptops, to
make the machines more consistent. I never really liked the MATE desktop
anyway. The laptops and the mini-PCs are all running Firefox. The only issue
I’ve run into is that Paramount Plus won’t play streaming video with Firefox.
So I’m using Chrome for that.

Oh, I almost forgot — there aren’t really three of them yet. There are only two.
Casper went missing. Apparently, B&H didn’t really have three of the mini-PCs
in stock. So I got the memory and SSD, but only two of the computers. After a
few days, I got a refund for the price of the third computer. These little NUCs
are very popular and supplies are constrained. This Bean Canyon i5 is out of
production now. I’ve looked to see if I can find one more of this exact same
model, a new-old stock or used box, but the units I’ve found in stock are much
more expensive than the ones I purchased. Fortunately there are newer models
available for about the same price. The 2400-speed DDR4 DIMMs I already
bought should work with these newer devices, although since the newer devices
support slightly faster memory, they will operate a little bit slower than their
maximum memory bandwidth. I’ll either live with that, or return the older
memory and order some new DIMMs that match the maximum speed of the
new device.

The kids want to try running games on these little boxes, and it’s possible, at
least at reduced resolution, but I don’t want to encourage the kids to use them
for gaming at present. I don’t think it’s a great idea to run these tiny boxes
under that kind of heavy load — it will probably shorten their lifespan. Also,
PC gaming can quickly become an all-consuming and very expensive hobby. If
high-end video cards are ever available again and the older kids want to save up
their allowance and build a gaming PC from parts, I’ll gladly help them build it,
but as a separate project.

If you are considering a Mac Mini or other PC for general use (not gaming), I
highly recommend getting one of these NUCs and installing your own memory

6

and SSD and installing the regular version of Ubuntu. It makes a very useful,
tiny machine. It is even possible to mount them on the back of certain monitors
to make a sort of poor man’s iMac, but it’s hardly poor; these are quite powerful
little boxes and will play streaming video content without stuttering. I’m
currently using one of them in our bedroom on a 43-inch 4K monitor to do some
writing and programming and it is impressive. I’ve had no issues at all other
than the minor hiccups in configuration that I mentioned.

Next up, I’m going to describe the new workflow that the combination of NAS
server and mini-PCs has allowed and encouraged me to develop.

The Mac-Free Workflow

I’ve used plenty of different kinds of computers in the last 45 years, but for
actually getting writing done, I’ve long preferred Macs. My favorite editor is
BBEdit. It’s a reliable workhorse and very fast. I’d rather use BBEdit than
any other editor. BBEdit is Mac-only, though. Notepad++ is a pretty capable
alternative on Windows, and if I have to work on a Windows machine, and if I’m
allowed to allow software on it, I quickly install Notepad++. Why? The have
features that I use all the time — for example, both of them allow rectangular
selection. But I haven’t truly ever found a similar text editor that I loved on
Linux. I can do the basics in vi, but I’m just not as quick and effective when
writing in vi as I am using a visual editor.

I am still getting used to it, and I can’t say I love it, but Visual Studio Code is
pretty decent. I love the themes — they work very well on modern high-dynamic-
range screens where pure white or pure black are just too bright or too dark and
the extreme contrast is hard on the eyes. I’m partial to the “Monokai” family of
themes.

The Mac version of Visual Studio Code feels speedier and seems to be ahead
of the Linux version, but the Linux version is OK, too. But one thing I really
miss is BBEdit’s worksheet concept, borrowed from MPW, the old Macintosh
Programmer’s Workshop. Worksheets are editable documents which allow you
to select text and execute it. The output of the commands shows up right in the
worksheet. So it’s like using the command line, except tht you can visually edit
the commands you are issuing, and keep a log of the results. I use worksheets
extensively for producing podcasts and for writing. When I start a new podcast,
I will often copy and paste the text I used for a previous episode, update the
title and some details, and go from there. I do similar things with the sets of
commands I use to generate HTML and PDF files from Markdown files.

Visual Studio Code doesn’t have worksheets, but it does allow me to open up
a convenient terminal pane right in the GUI. I’ve long wondered how hard it
would be to use make for my writing workflow. With a little time off to work
on it, I decided to dive and try it.

7

https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop

The Basics of make

The make utility program, which on Linux usually means GNU Make, but can
mean other similar tools on other platforms, is a very old program designed in a
different computing world. I’ve used many versions of make over the years on
many platforms, going back to MS-DOS, and I understand the basic idea. I’ve
written some simple Makefiles, but I never really dove into more complicated uses.
Searching the web, I found some blog posts and Github projects that include
Makefiles for working with pandoc, but I was not able to easily understand
them, and they seemed to lack some of the features I needed. I spent a little
time looking for a more modern alternative to make that would be suitable, but
they all seemed too heavyweight, too language-specific, or too complex.

I own a print copy of the GNU Make manual written by Richard M. Stallman
and Roland McGrath, and that seemed like a good place to start. Unfortunately,
it really wasn’t. Although the book does have some Makefile examples into it,
it is mostly an in-depth reference to the more arcane built-in functions. The
examples included are extremely simple and don’t use most of the features
described. So, I had to try to learn the hard way, building a Makefile from the
ground up, and simply experiment until I figured some things out.

When I say that make “is a very old program designed in a different computing
world,” here are a few examples of what I mean by that:

• It operates on directories and files, but the lists of files are handled internally
as text strings.

• Make doesn’t have anything like modern quoted string types, with support
for escaped characters.

• Make’s support for wildcards doesn’t look much like it does in other
programming environments you might be used to, such as Bash or Perl.

• Make offers library functions for pattern-matching rather than regular
expressions.

• It operates on lists of “words” (delimited by spaces).
• The use of spaces as word delimiters results in strict limitations on the

characters that can be in directory and file names.
• Make does not have modern facilities for working with directories, other

than as strings.

And, finally,

• Commands in rules must always be indented using tab characters, not
spaces!

That last thing is a minor irritant, but it’s one of the longest-lasting minor
irritants in the entire history of software development. Just in case you wind
up trying to copy and paste excerpts from my Makefile, below, into one of your
own, you should be aware that, depending on which tools you are using, the
resulting text may not contain the necessary tab characters, and if it doesn’t,
make will complain about that.

8

My make Use Case

What I’m trying to do doesn’t seem too hard. I’m working with directories full
of Markdown files that are part of project directories. The source tree is also
version-controlled using Git. The structure looks something like this:

[my personal server directory]/
writing/

src/
the_coffee_underachiever/

Makefile
md/

2019/
file1.md
file2.md
file3.md

2020/
file4.md
file5.md

2021/
file6.md

img/
index.md

I want this to get transformed into a somewhat different structure, where the
generated files are staged to be synchronized with my web host:

[work dir]/
sites/

writing/
the_coffee_underachiever/

2019/
file1.html
file2.html
file3.html
pdf/

file1.pdf
file2.pdf
file3.pdf

2020/
file4.html
file4.html
pdf/

file4.pdf
file5.pdf

2021/
file6.html

9

pdf/
file6.pdf

index.html
img/

Defining My Variables

The make program allows a Makefile to define variables. They are really
space-delimited strings. We specify directories including the trailing slash.

SRC_ROOT_DIR = .
MD_SRC_ROOT_DIR = $(SRC_ROOT_DIR)/md/
IMG_SRC_ROOT_DIR = $(SRC_ROOT_DIR)/img/
DEST_ROOT_DIR = ~/Documents/sites/writing/the_coffee_underachiever/
DEST_PDF_SUBDIR = pdf/
DEST_IMG_DIR = $(DEST_ROOT_DIR)img/

For example, DEST_IMG_DIR becomes “~/Documents/sites/writ-
ing/the_coffee_underachiever/img/”

We can do wildcard expansion in many places in Make, but the * syntax doesn’t
work when defining a variable; instead we have to use the built-in wildcard
function. To include the contents of a variable, we use the $(variable_name)
syntax. We can combine these and define a variable that contains a list if
space-delimited “words,” where each “word” will be a filename with its path, for
example ./md/2019/file1.md.

SRC_MD_DOCS = \
$(wildcard $(MD_SRC_ROOT_DIR)*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2019/*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2020/*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2021/*.md)

I’d like it if there was a make function which would search a subtree starting
from a given point — for example, I’d like it if I could use a single built-in
function to create a list of full paths to all the .md files in the md directory
and its subdirectories, recursively, but I don’t think there is. I think it’s possible
to do this by including shell commands in the Makefile itself. I’ve seen examples
of this, but for various reasons I’m not happy with this technique, so I’m going
to avoid it for now.

Note that the “list” generated by the variable definition is really not even a list
in the Lisp sense, but a single string consisting of space-delimited “words.” The
first few words are:

./md/index.md ./md/2019/file1.md ./md/2019/file2.md

Note that this means the filenames and directory names can’t contain any spaces!
This was normal in the days when systems ran early versions of UNIX, as well as
CP/M and MS-DOS. But severe restrictions like this haven’t been common since

10

the development of more user-friendly systems, which include modern versions
of UNIX. So we now have a tool that runs on UNIX and Linux systems that
imposes much more severe restrictions on filenames than the systems themselves.

I don’t like this restriction; many of my files contain spaces as well as other
characters that cause trouble with tools such as make, including single and
double quotation marks. I’d rather work with a tool with facilities that will
handle arbitrary filenames and directory names, but for now I’m willing to live
with these limits and change my filenames to conform to these requirements.
Long-term, I’ll be looking for a more modern tool.

Creating My Target File Lists

Anyway, I’ve now got a list of all the Markdown files, but to specify make rules
for creating targets from the prerequisites, I need to specify the targets. The
make utility provides a number of functions that process these lists of files. As
I mentioned before, the manual I was working from is very light on real-world
examples, so I had to experiment. Here’s a variable definition I came up with for
generating a list of my target HTML files from the list of precedent Markdown
files. I’ll present the definition first and then explain it a bit.

DEST_HTML_DOCS = \
$(subst $(MD_SRC_ROOT_DIR),$(DEST_ROOT_DIR), \

$(join \
$(dir $(SRC_MD_DOCS)), \
$(addsuffix .html, \

$(basename $(notdir $(SRC_MD_DOCS))))))

The multiple levels of indentation are not strictly required, but I wrote it this way
because to me, the Make functions look a bit like Lisp primitives, which makes
sense, given Stallman’s background and work on Emacs Lisp. Working from the
inside out, we start by applying two functions to $(SRC_MD_DOCS), dir
and notdir. The dir function takes a word, or list of words, and returns only
the part or parts that look like directory paths, not filenames, using a simple
heuristic (recall our restrictions on directory names). The notdir function gives
us only the filenames. So we’ve got two “lists” now:

./md/ ./md/2019/ ./2019/
index.md filename1.md filename2.md

I apply the basename function to the output of notdir, which yields the
filenames without extensions:

index filename1 filename2

And then the addsuffix command:

index.html filename1.html filename2.html

The join command is, if you squint, a bit like a list zip command in a language

11

https://en.wikipedia.org/wiki/Emacs_Lisp

like Haskell. It assembles the elements from two lists of the same length into
one, giving us:

./md/index.html ./md/2019/filename1.html ./md/2019/filename2.html

Finally, we use the subst function to replace a substring of each word, giving us:

~/Documents/sites/writing/the_coffee_underachiever/index.html ~/Documents/sites/writing/the_coffee_underachiever/2019/filename1.html ~/Documents/sites/writing/the_coffee_underachiever/2019/filename2.html

If it’s occurred to you that using textual substitution on filename paths is fragile
and subject to all kinds of breakage, especially since it doesn’t appear that this
substitution will only take place starting from the beginning of the string, you’re
absolutely right! There is certainly a better way, but probably not one that can
be implemented entirely in make — it’s built on very soft foundations more
suited for a simpler and gentler computing ecosystem.

For generating the paths for the PDF files, I have a similar definition, except
that I don’t want to generate a PDF file of the index. So I filter that word out:

SRC_MD_DOCS_NO_INDEX = \
$(filter-out $(MD_SRC_ROOT_DIR)index.md, $(SRC_MD_DOCS))

Then I generate the list of PDF targets like I did the HTML targets:

DEST_PDF_DOCS = \
$(subst $(MD_SRC_ROOT_DIR),$(DEST_ROOT_DIR), \

$(join \
$(dir $(SRC_MD_DOCS_NO_INDEX)), \
$(addprefix pdf/, \

$(addsuffix .pdf, \
$(basename $(notdir $(SRC_MD_DOCS_NO_INDEX)))))))

This definition is obviously very similar to the previous one, differing only by
the prefix and suffix. There may be a way to factor out a common function here,
but I’m not sure; while make is, I think, certainly Turing-complete, it is lacking
a lot of things that I think of as fundamental to programming languages.

Generating Targets with Pandoc

Here’s some scaffolding for generating pandoc commands:

PANDOC=/usr/bin/pandoc
PANDOC_OPTIONS=--ascii --standalone --shift-heading-level-by=-1 \

-f markdown+smart
PANDOC_HTML_OPTIONS=--to html5
PANDOC_PDF_OPTIONS=

Now that we’ve got our lists of documents, we can write rules that match on them.
Let’s write a rule that should turn any of our Markdown files into corresponding
HTML files, where the % character matches any substring in our file path —
but note that % must match the same thing on both sides.

12

https://en.wikipedia.org/wiki/Turing_completeness

$(DEST_ROOT_DIR)%.html : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

In this case it will match on a substring like:

2021/2021_02_21_Shelving_the_Library

which is found in both the target:

/home/paul/Documents/sites/writing/the_coffee_underachiever/2021/2021_02_21_Shelving_the_Library.html

and the predecessor:

md/2021/2021_02_21_Shelving_the_Library.md

But the following rule will not work for PDF files, since the pdf/ subdirectories
exist in the output directories:

$(DEST_ROOT_DIR)%.pdf : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

Instead we need to match on a rule that takes the structural difference into
account. We can’t just append the pdf/ subdirectory on the left, since the
match includes the filename, so this won’t work:

$(DEST_ROOT_DIR)%pdf/.pdf : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

Have I mentioned that debugging Makefiles can be quite difficult? Well, it can
be!

And unfortunately our pattern matching options seem to be limited; we don’t
have regular expressions in our toolkit. So I had to use multiple pattern-match
rules for my PDF file outputs, where the % matches only on the filename portion
of the file path:

$(DEST_ROOT_DIR)2019/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2019/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

$(DEST_ROOT_DIR)2020/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2020/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

$(DEST_ROOT_DIR)2021/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2021/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

There may be a more concise way to handle this, but this is working fine for
now.

Note that the special variables: $@ and $< mean, respectively, the target and
the predecessor, that matched the left and right side of the rules.

$(DEST_ROOT_DIR)index.html : $(MD_SRC_ROOT_DIR)index.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

13

Then I can supply a pattern rule:

$(DEST_ROOT_DIR)%.html : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

This rule will match on file paths that match the destination and source root
directories with anything in between these directories and the file suffixes. The
% character must match the same string of characters on both the left (target)
and right (predecessor) side. So a target of:

~/Documents/sites/writing/the_coffee_underachiever/2019/filename1.html

and a predecessor of:

./md/2019/filename1.md

will result in the command under this rule being executed, to generate the target
from the prececessor, and the whole point of make is to only run what needs to
be re-run if a predecessor has been changed more recently than its associated
target.

I haven’t really shown how I handle the images, but essentially I just copy all
the matching JPEG files from the source into the destination with a simple rule
that uses the cp command:

$(DEST_IMG_DIR)%.jpg : $(IMG_SRC_ROOT_DIR)%.jpg
cp $< $@

In the future I might create image subdirectories like I do with with my PDF
subdirectories, but that shouldn’t be hard to change.

Defining Makefile Goals

Now, here’s how to define goals. The rules are a bit obscure here. Invoking
make with no goal will not always do what you want, so we need to define an
all target and make it so that the default is set to match this target. I also
know that it takes a very long time to generate all the PDF files, so I don’t want
the usual make clean command to remove them. I want to make it so make
pdfclean removes them instead. That will help make it so I don’t accidentally
make it so I have to regenerate all the PDFs, which might require a half-hour or
more, unless I’ve changed a predecessor.

The .PHONY goal is slightly difficult to explain, but essentially, the parameters
to make can be used to specify a target filename or filenames. This works fine
unless we have a filename that conflicts with our goal. To avoid this possibility,
we declare these targets as .PHONY, meaning that they define goals and not
actual target files. This elaborate workaround wouldn’t have been necessary
if make supported a more modern set of command-line options, like make
–goal=html or make –target=index.html.

14

.PHONY: all imagefiles htmlfiles pdffiles \
imageclean htmlclean pdfclean clean

.DEFAULT_GOAL := all

all: imagefiles htmlfiles pdffiles

imagefiles: $(DEST_IMG_DOCS)

htmlfiles: $(DEST_HTML_DOCS)

pdffiles: $(DEST_PDF_DOCS)

imageclean:
rm $(DEST_IMG_DOCS)

htmlclean:
rm $(DEST_HTML_DOCS)

pdfclean:
rm $(DEST_PDF_DOCS)

clean: imageclean htmlclean

The goals can consist of both targets and commands. Building the PDF target
processes specifies the PDF targets. Cleaning the PDF targets does not attempt
to build any targets, but executes the rm command on all the PDF targets.
Goals can refer to other goals.

Creating Directories: the Simple Way

I’ve left off a useful step. Given what I’ve shown you so far, you’d have to
manually create the target subdirectories. We can use make to do that for us,
but doing it the right way complicates the Makefile a bit.

We could just add some mkdir commands to our existing goals, using the -p
option, which makes it so no error is generated if the directory already exists:

html: $(DEST_HTML_DOCS)
mkdir -p $(DEST_ROOT_DIR)2019/
mkdir -p $(DEST_ROOT_DIR)2020/
mkdir -p $(DEST_ROOT_DIR)2021/

This requires some overhead every time make is run with this goal. It’s pretty
insignificant in this case, but to do it the right way, so that it doesn’t send
unnecessary commands, you use “order-only prerequisites.”

15

Creating Directories: the Idiomatic Way

Let’s add a rule to indicate that the image files targets are dependent on the
image directory:

$(DEST_IMAGE_FILES): | $(DEST_IMAGE_DIR)

Note that there’s some new syntax here. Prerequisites mentioned in a rule to the
right of a vertical bar character are “order-only prerequisites.” They are checked
to see if they exist, but their time stamps are not checked to determine if they
are newer than the target. It makes sense to use this kind of prerequisite for
directories, whose time stamps are updated whenever something in the directory
changes. If we didn’t do this, we could get rules re-triggered when both a file
time stamp and its containing directory time stamp are updated.

Now we have a rule to make the image directory. Since it only runs if the
order-only prerequisite image directory is missing, we don’t need to supply the
p option to mkdir.

$(DEST_IMAGE_DIR):
mkdir $(DEST_IMAGE_DIR)

The imagefiles goal just expands to all the image file targets:

imagefiles: $(DEST_IMAGE_FILES)

Now we have similar sets of prerequisites for our HTML output directories. The
order-only prerequisites are expanded from a variable DEST_HTML_DIRS
that I’ve defined to contain the three destination directories.

$(DEST_ROOT_DIR)2019/:
mkdir $(DEST_ROOT_DIR)2019/

$(DEST_ROOT_DIR)2020/:
mkdir $(DEST_ROOT_DIR)2020/

$(DEST_ROOT_DIR)2021/:
mkdir $(DEST_ROOT_DIR)2021/

$(DEST_HTML_FILES): | $(DEST_HTML_DIRS)

htmlfiles: $(DEST_HTML_FILES)

Things are a bit more complex for the PDF files, since the PDF subdirectories
exist inside the HTML directories. This means I want to specify that making
the destination PDF files depends on the destination PDF directories, and
also specify that making the PDF directories depends on making the HTML
directories. If there’s nothing in the destination root directory, when I run make
pdffiles, these rules will result in make creating the HTML directories first,
then the PDF subdirectories, then the PDF files.

16

Note that if the HTML directories have already been created, make will only
create the PDF subdirectories, then the PDF files. If both sets of directories
exist, then make will only create the PDF files themselves.

Why are there three targets for the PDF subdirectories? Well, that makes it
easier to reliably handle cases where one or two of the three subdirectories is
missing, without generating errors.

$(DEST_ROOT_DIR)2019/pdf/:
mkdir $(DEST_ROOT_DIR)2019/pdf/

$(DEST_ROOT_DIR)2020/pdf/:
mkdir $(DEST_ROOT_DIR)2020/pdf/

$(DEST_ROOT_DIR)2021/pdf/:
mkdir $(DEST_ROOT_DIR)2021/pdf/

$(DEST_PDF_DIRS): | $(DEST_HTML_DIRS)

$(DEST_PDF_FILES): | $(DEST_PDF_DIRS)

pdffiles: $(DEST_PDF_FILES)

Cleaning Up Directories

That just leaves our goals to clean things up, which shouldn’t be too hard to
understand now. Since the Makefile will properly build any needed directories,
the imageclean target just removes the whole image directory rather than just
the files inside it:

imageclean:
rm -rf $(DEST_IMAGE_DIR)

For the htmlclean target, I don’t actually want to remove the directories, because
they might contain PDF files. Rebuilding the PDF files is time-consuming, so
we don’t want to do it unless the pdfclean goal was specified.

htmlclean:
rm $(DEST_HTML_FILES)

For the pdfclean target, we can remove the PDF subdirectories.

pdfclean:
rm -rf $(DEST_ROOT_DIR)2019/pdf/ \

$(DEST_ROOT_DIR)2020/pdf/ \
$(DEST_ROOT_DIR)2021/pdf/

You might notice that the way I’ve implemented the clean commands means
that I’ll never actually delete the directories 2019, 2020, and 2021 under
the destination root directory, once they’ve been made. There are ways to

17

conditionally remove directories only if they are empty, but they seem quite ugly
to me and depend on shell commands, so I’m not going to bother with that. I
can live with some leftover empty directories.

The New Workflow

So, now I’ve got a Makefile. Now what?

Well, this means that whenever I make changes in the source files, I can just
execute make in the Visual Studio Code terminal window and it does only
the minimal amount of work required to bring the targets up to date. The
staging directory is local to the machine I’m working on — today it’s a laptop,
yesterday it was Melchior, one of the NUCs. I don’t worry about backing up
the contents of the staging directories, since all the files are generated from the
version-controlled source files on the server.

Finally, when I am satisfied with the generated HTML and PDF files, I can push
them up to our web server with rsync. I’m going to save that topic to explain
another day, since it involves SSH keys.

Happy New Year!

About This Newsletter
This newsletter by Paul R. Potts is available for your use under a Creative
Commons Attribution-NonCommercial 4.0 International License. If you’d like
to help feed my coffee habit, you can leave me a tip via PayPal. Thanks!

18

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://paypal.me/coffeeunderachiever

	Thursday
	The Synology NAS
	Upgrade Paths
	The Backup Problem
	Exceeding My Expectations
	Central Dogma
	The Mac-Free Workflow
	The Basics of make
	My make Use Case
	Defining My Variables
	Creating My Target File Lists
	Generating Targets with Pandoc
	Defining Makefile Goals
	Creating Directories: the Simple Way
	Creating Directories: the Idiomatic Way
	Cleaning Up Directories
	The New Workflow

	About This Newsletter

